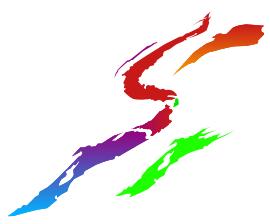
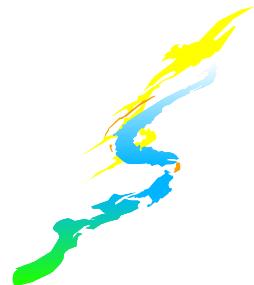


Multi-Protocol Transport Services


NetBIOS, NetBEUI, TCP/IP,
NetBIOS over TCP/IP

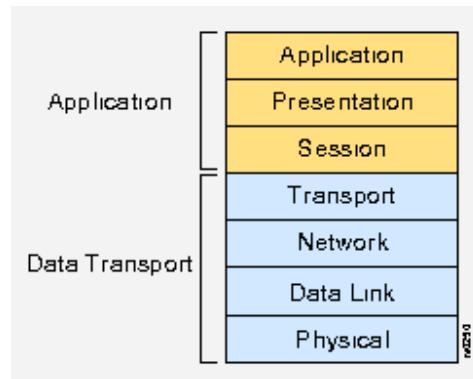
Introduction


- Overview of OSI Reference Model
- Local Area Networking Concepts
- NetBIOS/NetBEUI overview
- TCP/IP overview
- NetBIOS over TCP/IP
- OS/2 TCPBEUI
- Windows Clients
- Troubleshooting

The OSI Reference Model

An Introduction

OSI reference model



- Developed by International Organization for Standardization (ISO) in 1984
- Conceptual model composed of seven layers
- Provides a conceptual framework for communication between computers
- Actual communication is made possible by the usage of "communication protocols"
- Tasks assigned to each layer can be implemented independently

The seven layers of OSI model

- The seven layers of OSI model are shown below

The Physical layer

- Defines electrical, mechanical, procedural and functional specifications for activating, maintaining and deactivating physical link between systems
- Define characteristics such as voltage levels, timing of voltage changes, physical data rates, maximum transmission distances and physical connectors used
- Examples: Ethernet, Token-Ring, FDDI, etc.

The Data Link layer

- Provides reliable transit of data across the network
- Data Link characteristics include:
 - Physical addressing: Defines how devices are addressed at the data link layer
 - Network topology: Specifies how devices are to be physically connected
 - Error notification: Alerting upper layers that a transmission error has occurred

The Data Link layer (contd..)

- Sequencing of frames: Reordering data frames that are transmitted out of sequence
- Flow control: Moderates transmission of data so that the receiving device is not overwhelmed with more traffic than it can handle at one time

The Data Link layer (contd..)

- The Data Link layer is subdivided into
 - Logical Link Control (LLC) sublayer
 - Media Access Control (MAC) sublayer

The Logical Link Control sublayer

- Manages communication between devices over a single link of a network
- Defined in the IEEE 802.2 specification
- Supports both connectionless and connection-oriented services used by higher protocols
- Typically protocols that use the 802.2 LLC implementation are non-routable
- Example: LLC implementation in NetBEUI

The Media Access Control (MAC) sublayer

- Manages protocol access to the physical network medium
- MAC addresses are defined by IEEE MAC specification that allow multiple devices to uniquely identify one another in the data link layer
- Examples: Ethernet, Token-Ring, FDDI, Frame Relay, PPP, etc.

The Network layer

- Provides routing and related functions that allow multiple data links to be combined
- Supports both *connection-oriented* and *connectionless* service from higher layer protocols
- Examples: Internet Protocol (IP), NetBEUI, OSPF, etc.

The Transport layer

- Implements reliable data transport services transparent to the upper layers
- Transport layer functions include
 - Flow Control: Manages data transmission between devices so that the transmitting device does not send more data than the receiving device can process
 - Multiplexing: Allows data from several applications to be transmitted onto a single physical link

The Transport layer (contd..)

- Virtual circuit management: VCs are established, maintained and terminated by the transport layer
- Error checking and recovery: Takes care of detecting transmission errors. Error recovery (requesting data to be retransmitted) is handled by the transport layer
- Examples: TCP, NetBEUI

The Presentation layer

- Provides a variety of coding and conversion functions that are applied to application layer data
- Provides functions that ensure that information sent from the application layer will be readable by the application layer of another system.
- Not typically associated with a particular protocol stack

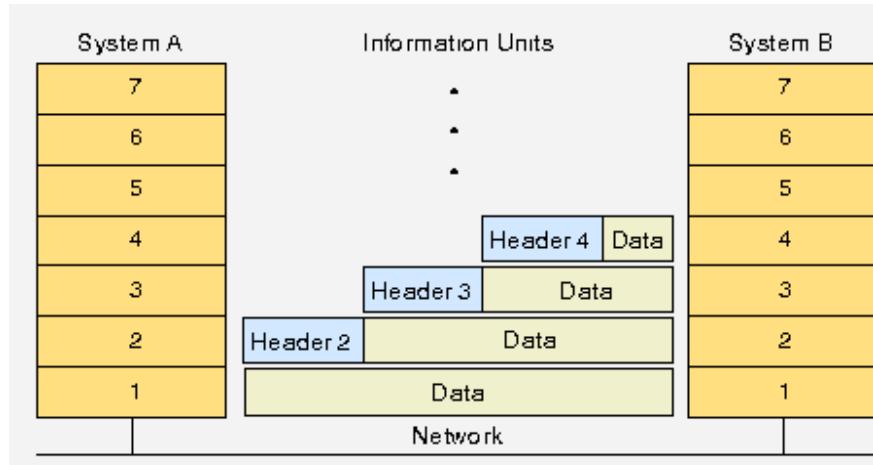
The Session layer

- Establishes, manages and terminates communication sessions between presentation layer entities.
- Communication sessions consist of service requests and service responses between applications.

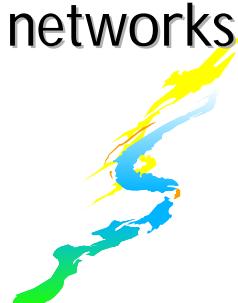
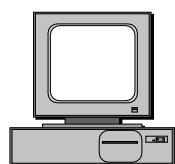
The Application layer

- Identifies communication partners
- Determines if sufficient network resources are available for communication
- Synchronization of communication is managed by the application layer
- Examples: File Transfer Protocol (FTP), Telnet etc.

Basic elements involved in layered services



- Service user: The OSI layer requesting services from an adjacent OSI layer
- Service provider: The OSI layer that provides services to the service users
- Service Access Point (SAP): Conceptual location at which one OSI layer can request the services of another layer



Data encapsulation

- Encapsulation: Data unit at a given OSI layer potentially contains headers trailers and data from all the higher layers

Local Area Networking concepts

The workgroup and peer networks
The server and domain networks

The workgroup/peer network

- Group is dynamic
- All shares controlled by their users
- No master control/regulation over resources
- Highly flexible
- Low on security
- Example: IBM Peer for OS/2, Windows for Workgroups, Windows NT workstation

Advantages/disadvantages


- Advantages
 - Very flexible
 - Direct data exchange
 - Fast and simple to implement
 - All resources in the community can be used by everyone
- Disadvantages
 - Insufficient security
 - Resource sharing and access rights definitions complicated

The server/domain network

- All shared resources controlled by a server
- All access controls to critical resources centralized
- Administration is easy
- Does not have the flexibility of Peer networking
- Examples: OS/2 Warp Server network, Windows NT server network

Advantages/disadvantages

- Advantages
 - High security against unauthorized access
 - Management is easy
 - Centralized access control
- Disadvantages
 - Expensive than Peer networks
 - Skilled administrators required.

NetBIOS/NetBEUI overview

Network Basic Input/Output System (NetBIOS)

- Originally developed by IBM and Sytec Corporation
- NetBIOS is **not** a protocol but an Application Programming Interface
- NetBIOS needs a network protocol such as NetBEUI/TCPBEUI for its working
- It isolates the application program from the actual hardware used in the LAN
- Standardizes the interface for usage by application programs

Features of NetBIOS

- Computers using NetBIOS are known by their names
- These names must be unique in the network
- Communication is possible by
 - Establishing sessions (connection-oriented)
 - Using datagrams (connectionless)
- Defines standard format for commands called the Network Control Block (NCB)

Types of services provided by NetBIOS

- NetBIOS provides three types of services:
 - Name Service
 - Session Service
 - Datagram Service

NetBIOS Name Service

- Used to register/identify resources in NetBIOS
- NetBIOS names can be:
 - Unique: Owned by one and only one node
 - Example: a machine name
 - Group: Shared by many nodes that belong to a particular group
 - Example: a domain name
- Names registered by a node is maintained in the node's 'Name Table' until it is deregistered

NetBIOS Services

- Session Service
 - Provides a connection-oriented, reliable, full duplex message service
 - Destined for a specific node
- Datagram Service
 - Provides connectionless, unreliable, best effort service
 - Datagrams can be directed to a particular node or can be a broadcast

NetBIOS name characteristics

- All names are 16 bytes long
- The 16th byte specifies the functionality of the particular registered name
- A name can be *UNIQUE* name or *GROUP name* but not both
- Each node maintains a list of all names registered on it in a 'Name Table'
 - NBJDSTAT.EXE can be used on machines running NetBIOS over NetBEUI to dump the 'Name Table'

The NAME_NUMBER_1

- Every instance of NetBIOS configured on a machine has a NAME_NUMBER_1
- Consists of 10 bytes of ASCII '0' followed by the adapter's Universally Administered Address (UAA)
- This is a permanent name and cannot be deleted
- Used in 'STATUS_QUERY', 'STATUS_RESPONSE' and 'NAME_IN_CONFLICT' NetBEUI frames

The Network Control Block

- The NCB structure is shown below

Offset/# of bytes	Parameter Name
0/1	NCB_COMMAND
1/1	NCB RETCODE
2/1	NCB_LSN
3/1	NCB_NUM
4/4	NCB_BUFFER@
8/2	NCB_LENGTH
10/16	NCB_CALLNAME
16/16	NCB_NAME
42/1	NCB_RTO
43/1	NCB_STO
44/2	NCB_POST@
46/2	NCB_DDID
48/1	NCB_ADAPTER_NUM
49/1	NCB_CMD_CMPL
50/14	NCB_RESERVE

NCB commands

- NCB.ADD.GROUP.NAME
- NCB.ADD.NAME
- NCB.CALL
- NCB.CANCEL
- NCB.CHAIN.SEND
- NCB.CHAIN.SEND.NO.ACK
- NCB.DELETE.NAME
- NCB.FIND.NAME

NCB commands (*continued*)

- NCB.HANG.UP
- NCB.LAN.STATUS.ALERT
- NCB.LISTEN
- NCB.RECEIVE
- NCB.RECEIVE.ANY
- NCB.RECEIVE.BROADCAST.DATAGRAM
- NCB.RECEIVE.DATAGRAM
- NCB.RESET

NCB commands (*continued*)

- NCB.SEND
- NCB.SEND.BROADCAST.DATAGRAM
- NCB.SEND.DATAGRAM
- NCB.SEND.NO.ACK
- NCB.SESSION.STATUS
- NCB.STATUS
- NCB.TRACE
- NCB.UNLINK

NetBIOS frames

- NetBIOS frames are of two types

- Unnumbered Information (UI):
 - Used for Datagram communication
 - Frame contains calling and called names, hence frame size is 44 bytes
- Information(I)
 - Used after a session is established
 - The LSN-RSN pair is used for identification of source and destination machines, hence frame size is 14 bytes

NetBIOS UI-frame format

- The NetBIOS UI frame format is shown below

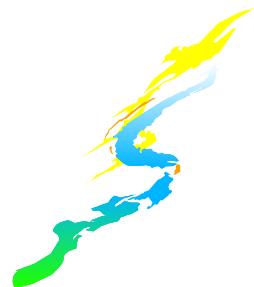
0	2	4	5	6	8	12	28	44
NETBIOS Header Length	X'EFFF'	Command	Optional Data1	Optional Data2	Xmit/Resp Correlator	Dest Name	Source Name	

NetBIOS I-frame format

- NetBIOS I-frame format is shown below

0	2	4	5	6	8	12	13	14
NETBIOS Header Length	X'FFFF'	Command	Optional Data1	Optional Data2	Xmit/Resp Correlator	Dest Num	Source Num	

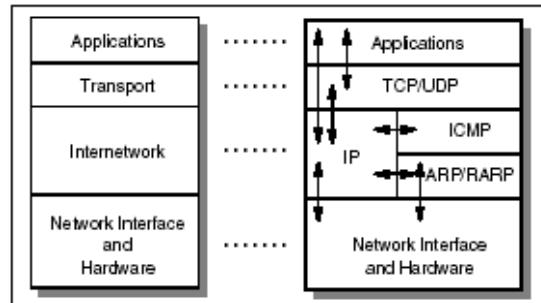
NetBIOS functional address



- The address C00000000080 is known as the NetBIOS functional address
- All machines in the 'NetBIOS Scope' must receive and process frames whose destination h/w address is the NetBIOS functional address
- Ethernet uses 030000000001 as the functional address

TCP/IP overview

Introduction to TCP/IP



- Layered protocol structure
- Named after two of its primary protocols
- Layered representation lead to the term 'protocol stack'

TCP/IP architecture

The Application layer

- Provided for programs that use TCP/IP for communication
- Interfaces with Transport layer using ports and sockets
- Examples: Telnet, FTP, DNS, etc.

The Transport layer

- Provides end-to-end data transfer
- Protocols in this layer provide
 - Connectionless service
 - eg., User Datagram Protocol (UDP)
 - Connection-oriented service
 - eg., Transmission Control Protocol (TCP)

The Internetwork layer

- Also called the internet/network layer
- Provides connectionless service
- Shields higher levels from network architecture below
- Provides the *routing* function
- Eg., Internet Protocol (IP), ICMP, IGMP, ARP, RARP

The Network Interface layer

- Also called the link/data link layer
- Is the actual interface to the network h/w
- TCP/IP does not specify any specific protocol at this level
- eg., IEEE 802.2, X.25, ATM, etc.

The client/server model

- Server
 - Application that offers service to internet users
 - Wait for requests on *well-known* ports
 - Receives request on the *well-known* ports
 - Performs the required service and sends back reply to clients

The client/server model (contd..)

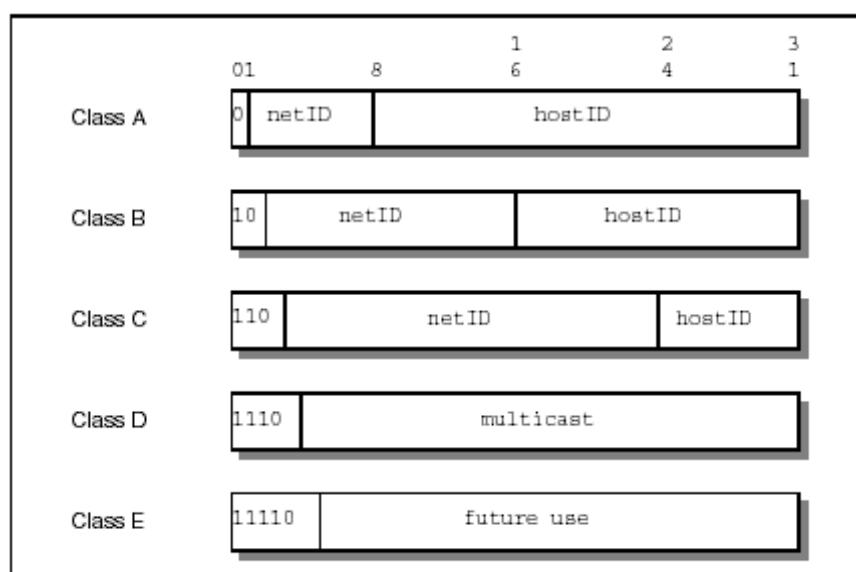
■ Client

- Requester of a service
- Uses an arbitrary port known as '*ephemeral port*' to contact the server
- Sends service request to a '*well-known*' port on the server

The Internet Protocol

- Provides unreliable, connectionless datagram delivery service
- Most protocols in the TCP/IP suite use IP datagrams for transmission
- Hides underlying details by creating a 'virtual network'

The IP address



- Used to uniquely identify a machine on the network
- Represented as an unsigned 32-bit value
- Represented in a dotted decimal format
- *IP address = <n/w number><host number>*

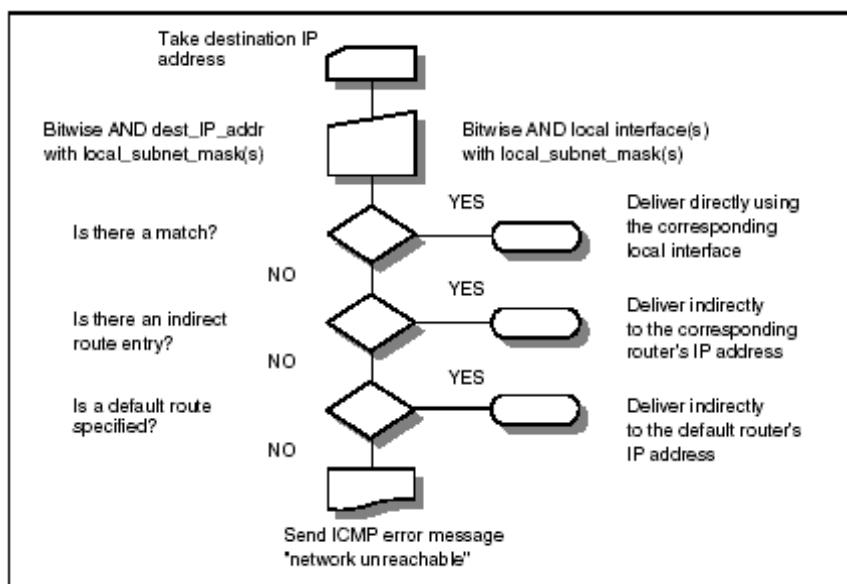
Class based IP addressing

Reserved IP addresses

- All bits 0
 - All bits 0 in host portion implies 'this' host
 - All bits 0 in network portion implies 'this' network
- All bits 1
 - Called directed broadcast
- Loopback
 - Is the class A n/w 127.0.0.0
 - Data to this n/w does not go on the wire

IP Subnets

- Created by dividing the host number
- Helps logically divide networks for easier administration
- Subnet mask
 - Specifies how many bits of the host number is used in the subnet
 - Made use of in routing



IP routing

- Provides mechanism to interconnect physical networks
- Routing function provided by a 'router'
- Routing could be
 - Direct
 - Destination on same physical n/w as source
 - Indirect
 - Destination and host on different physical networks

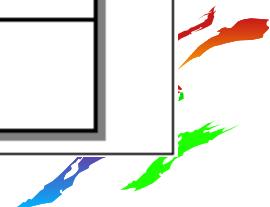
The IP routing algorithm

Intranets

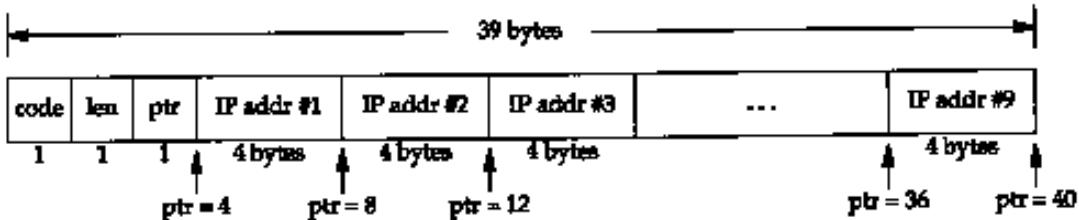
- Following ranges of addresses reserved for intranet use
 - 10.0.0.0
 - A Class A n/w
 - 172.16.0.0 through 172.31.0.0
 - 16 Class B n/w/s
 - 192.168.0.0 through 192.168.255.0
 - 256 contiguous Class C n/w/s
- Routers should be configured *not* to forward packets from these addresses

IP Broadcasting

- 3 primary types
 - Limited broadcast:
 - 255.255.255.255
 - *Never forwarded by routers*
 - *Refers to all hosts on local subnet*
 - Net directed broadcast:
 - *<net id> <host id = all 1>*
 - *Used in unsubnetted environment*
 - *Routers must forward these messages*
 - eg., 9.255.255.255



IP Broadcasting (contd..)


- Subnet directed broadcast:
 - $<\text{net id}><\text{subnet id}><\text{host number} = \text{all } 1s>$
 - Refers to all hosts on the particular subnet
 - eg., 9.182.20.255 is the subnet directed broadcast address of a network with subnet mask 255.255.255.0

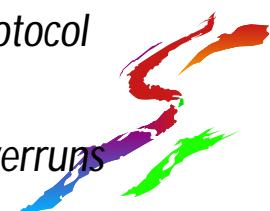
The IP datagram

IP options

IP Fragmentation

- Needed when packet needs to traverse networks with different MTUs
- Steps to fragment a datagram
 - Check the fragmentation allowed flag
 - If not allowed, send an ICMP error to originator
 - If allowed, fragment datagram into 2 or more parts
 - Header is modified as follows
 - More fragments bit set, except in the last
 - Offset field set in terms of 64bit values from 1st pkt
 - Total length = length of this fragment

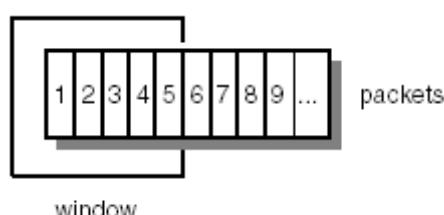
IP fragmentation (contd..)


- Fragments are reassembled only at the destination
- In case of loss of a fragment of a TCP segment, the entire segment is retransmitted

Transmission Control Protocol

- Provides reliable logical circuit between pairs of processes
- TCP provides
 - Stream data transfer
 - *Forms groups data into segments*
 - Reliability
 - *TCP is an acknowledgement driven protocol*
 - Flow control
 - *Takes care that there are no buffer overruns*

TCP (contd..)

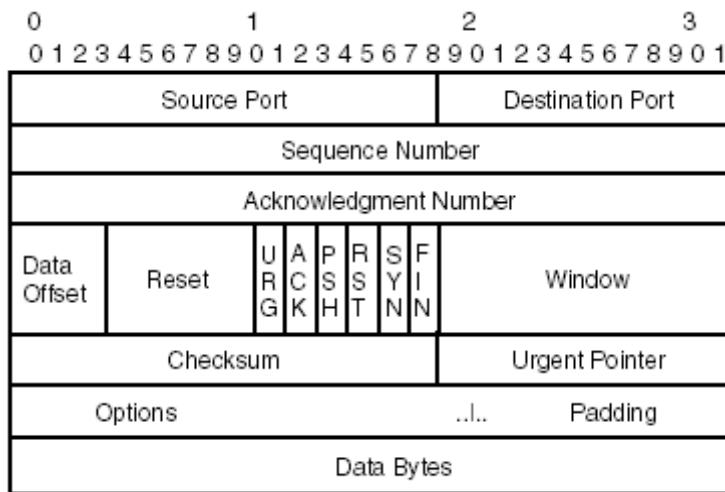

- Multiplexing
 - *Provided by the use of ports*
- Logical connections
 - *Status information for each stream is maintained*
 - *Each connection is identified uniquely by the pair of sockets*
- Full duplex
 - *TCP provides for concurrent data streams in both directions*

The Window principle

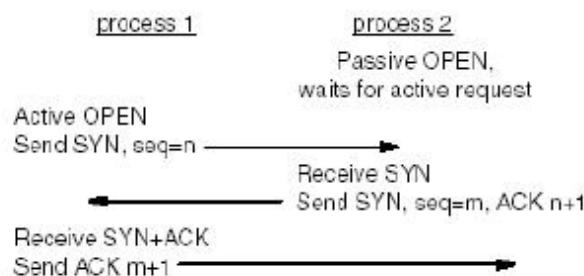
- For efficient utilization of network bandwidth, the window principle is used

Advantages of Window principle

- Reliable transmission
- Better utilization of n/w bandwidth
- Flow control


Window principle applied to TCP

- Sequence numbers assigned at byte-level
- ACKs received will have byte-sequence numbers
- Window size is determined by the receiver
- Can vary dynamically during data transfer
 - *Each ACK will include the window size the receiver can deal with at that time*



TCP Segment format

TCP Connection establishment

- TCP connection is established by means of a '3-way handshake'

TCP Connection termination

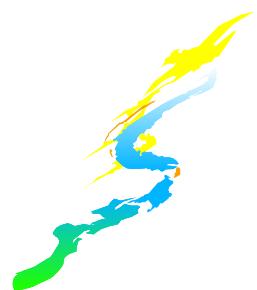
- By means of a '4 way handshake'
- Both parties must explicitly close the connection
- The TCP half close
 - *Can occur when one end (A) is done sending data*
 - *The other end (B) can still send remaining data*
 - *Finally B has to send a FIN to close the session*

User Datagram Protocol (UDP)

- Is a datagram-oriented protocol
- Provides no reliability/flow control or error recovery
- Uses ports to multiplex/demultiplex data
- Normally UDP data is sent in a single IP datagram

UDP header

UDP applications



- TFTP
- DNS / NBNS
- SNMP
- NFS
- LDAP

NetBIOS over TCP/IP

NetBIOS over TCP/IP

- Implementation of NetBIOS to operate with TCP/IP as transport mechanism
- Formally standardized in RFCs 1001 and 1002
 - Provides for support services that make working of protocol more efficient
 - Categorizes nodes depending on type of operation

The RFCs 1001/1002

■ RFC 1001

- *Provides a general overview of the protocol*
- *Gives emphasis on underlying ideas and techniques*

■ RFC 1002

- *Provides detailed specifications*
- *Describes packet formats, protocol constants and variables*
- *Provides pseudo-code for implementation*

Salient features

■ Defines 3 classes of operation

- *Broadcast node*
- *Point-to-point node*
- *Mixed node*

■ Defines 2 support servers

- *The NetBIOS Name Server (NBNS) node*
- *The NetBIOS Datagram Distribution (NBDD) node*

The NetBIOS Name Server

- Essentially a 'bulletin board' giving name-IP address mapping
- Used by P and M nodes
- Can work in secure/non-secure mode
- Is aligned with the Domain Name System (DNS), in addition provides
 - *Dynamic addition, updation and deletion of entries*
 - *Support for group names*

The NetBIOS Datagram Distribution Server

- Used by P and M nodes for datagram services
- End node may query NBDD if it will deliver datagram to a specified name
- WINS does not provide capabilities of a NBDD

RFC encoding of NetBIOS names

- Consists of two levels
 - 1st level
 - Maps NetBIOS name into a Domain system name
 - Consists of NetBIOS name and scope id
 - 2nd level
 - Maps domain system name into 'compressed representation' required for DNS

The NetBIOS Name service

- Name registration
- Name query
- Name release
- Name refresh
- Name challenge
- Name conflict
- NBNS WACK
- NBNS redirection
- Name caching

NetBIOS Session Service

- Session establishment
 - *Determine called name IP address*
 - *Establish a TCP connection*
 - *Send a Session Request*
- Steady state
- Session termination
 - *TCP connection termination*
 - *4 way handshake*

NetBIOS Datagram Service



- Used for services such as Browser announcements, Netlogon, etc.

OS/2 TCPBEUI

OS/2 TCPBEUI

- Implementation of RFCs 1001 and 1002 for the OS/2 operating system
- Provides support for multiple logical instances
- Provides support for multiple physical adapters (Software Choice release onwards)

Node types

- Broadcast/B-node
- Point-to-point/P-node
- Hybrid/H-node
 - Differs from the RFC M-node
 - Uses P-node operation for name registration and resolution
 - If not successful, resorts to B-node style

Routing extensions in OS/2 TCPBEUI

- Three routing extensions are provided in OS/2 TCPBEUI for efficient working
 - *The Names file (RFCNAMES.LST)*
 - *The Broadcast file (RFCBCST.LST)*
 - *The Cache file (RFCCACHE.LST)*

RFCNAMES.LST

- Contains Name-IP address mapping
- Up to 2000 entries are supported
- Used before name lookup is done on the network
- *Important*
 - All names *MUST* be entered in *UPPERCASE*
 - *Should not be used in cases where name-ip mapping is dynamic*

RFBCBCST.LST

- Can contain
 - IP addresses
 - Subnet broadcast addresses
 - Hostnames
- Up to 128 entries supported

RFCCACHE.LST

- Entries made by the stack in a format understood by it
- Cache lookup is done before sending a query packet on the network
- Should NOT be modified manually
- Given precedence over Names file and DNS lookup since it will be more '*current*'

Name registration

- Using BROADCASTS
 - Used by B-nodes
- Using the NBNS
 - Used by P/H-nodes

Name resolution

- Cache file lookup
- Names file lookup
- DNS lookup
 - *only if DOMAINSCOPE is configured*
- Query the network
 - B-nodes use broadcast method
 - P/H-nodes query the NBNS

DNS resolution

- Valid ONLY if DOMAINSCOPE configured
- Governed by ENABLEDNS parameter
 - If 0:
 - *Only encoded lookup is done*
 - If 1:
 - *Encoded first, if unsuccessful, unencoded lookup is done*
 - If 2:
 - *Unencoded first, if unsuccessful, encoded lookup is done*

TCPBEUI logical adapters

- Up to 4 logical instances is supported on 1 physical adapter
- CP levels provide support for TCPBEUI on multiple physical adapters with option for multiple logical instances on the physical adapters

Logical instances on same physical adapter

[NETBIOS]

```
DriverName = netbios$  
ADAPTER0 = tcpbeui$,0  
ADAPTER1 = tcpbeui$,1  
ADAPTER2 = tcpbeui$,2  
ADAPTER3 = tcpbeui$,3
```

[tcpbeui_nif]

```
DriverName = tcpbeui$  
Bindings = IBMTOK_nif,IBMTOK_nif,IBMTOK_nif,IBMTOK_nif
```

[tcpip_nif]

```
DriverName = TCPIP$  
Bindings = IBMTOK_nif
```


Multiple physical adapters

[NETBIOS]

```
DriverName = netbios$  
ADAPTER0 = netbeui$,0  
ADAPTER1 = tcpbeui$,1  
ADAPTER2 = tcpbeui$,2  
ADAPTER3 = tcpbeui$,3
```

[netbeui_nif]

DriverName = netbeui\$
Bindings = IBMFEO2_nif

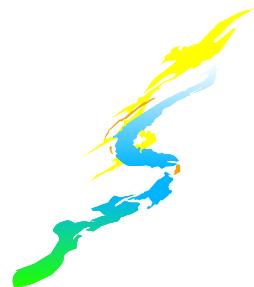
Multiple physical adapters (contd..)

[tcpbeui nif]

[tcpip nif]

Multiple physical adapters (contd..)

- Number of TCP/IP LAN interfaces = Number of NIFs in the BINDINGS statement in `tcpip_nif`
- The BINDINGS statement in the `[tcpbeui_nif]` section is restricted to the set of NIFS that appear in the BINDINGS statement of the `[tcpip_nif]` section
- Number of TCPBEUI logical adapters = Number of NIFs in BINDINGS statement of `tcpbeui_nif`


Multiple physical adapters (contd..)

- Name query response from a multi-homed TCPBEUI system will contain IP addresses of all interfaces configured for TCPBEUI
- OS/2 systems from S/w Choice onwards can decode chained IP addresses in name query response
- Legacy systems of OS/2 can decode only 1st IP address from chain

Windows style of interaction

Windows clients

- Windows Domain Controllers register <domain_name> <1C> with WINS
- Windows clients query for this name while trying to logon
- OS/2 DCs do not register this name when server service is started
- Windows clients hence do not find the OS/2 DCs

